Universal pointwise selection rule in multivariate function estimation
نویسندگان
چکیده
منابع مشابه
Universal pointwise selection rule in multivariate function estimation
In this paper, we study the problem of pointwise estimation of a multivariate function. We develop a general pointwise estimation procedure that is based on selection of estimators from a large parameterized collection. An upper bound on the pointwise risk is established and it is shown that the proposed selection procedure specialized for different collections of estimators leads to minimax an...
متن کاملVariance Function Estimation in Multivariate Nonparametric Regression
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of t...
متن کاملMultivariate intensity estimation via hyperbolic wavelet selection
We propose a new statistical procedure able in some way to overcome the curse of dimensionality without structural assumptions on the function to estimate. It relies on a least-squares type penalized criterion and a new collection of models built from hyperbolic biorthogonal wavelet bases. We study its properties in a unifying intensity estimation framework, where an oracle-type inequality and ...
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2008
ISSN: 1350-7265
DOI: 10.3150/08-bej144